您所在的位置:首页 - 科普 - 正文科普
神经网络编程入门
蕲风
2024-05-04
【科普】
666人已围观
摘要神经网络编程题答案在神经网络编程任务中,邱锡鹏提出的题目通常是一些经典问题,需要设计和实现相应的神经网络模型来解决。以下是一道常见的神经网络编程题及其答案。问题描述:假设我们有一个二分类问题,给定一组
神经网络编程题答案
在神经网络编程任务中,邱锡鹏提出的题目通常是一些经典问题,需要设计和实现相应的神经网络模型来解决。以下是一道常见的神经网络编程题及其答案。
问题描述:
假设我们有一个二分类问题,给定一组特征向量 x 和对应的标签 y,要求使用神经网络模型对其进行分类预测。请设计一个简单的神经网络模型,并给出相应的训练和测试代码。
答案:
为了解决这个二分类问题,我们可以设计一个具有一个隐藏层的前馈神经网络。以下是相应的训练和测试代码:
```python

import numpy as np
def sigmoid(x):
return 1 / (1 np.exp(x))
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(0)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X) b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) b2
A2 = sigmoid(Z2)
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
def compute_cost(A2, Y):
m = Y.shape[1]
cost = 1/m * np.sum(Y * np.log(A2) (1Y) * np.log(1A2))
return cost
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2 Y
dW2 = 1/m * np.dot(dZ2, A1.T)
db2 = 1/m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.dot(W2.T, dZ2) * (1 np.power(A1, 2))
dW1 = 1/m * np.dot(dZ1, X.T)
db1 = 1/m * np.sum(dZ1, axis=1, keepdims=True)
gradients = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
return gradients
def update_parameters(parameters, grads, learning_rate=0.1):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = learning_rate * dW1
b1 = learning_rate * db1
W2 = learning_rate * dW2
b2 = learning_rate * db2
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def train(X, Y, n_h, num_iterations=10000, learning_rate=0.1):
n_x = X.shape[0]
n_y = Y.shape[0]
parameters = initialize_parameters(n_x, n_h, n_y)
for i in range(num_iterations):
A2, cache = forward_propagation(X, parameters)
Tags: 百度钱包新年开福袋 有没有哪些可以看片的 斗战神幻甲 新浪show
版权声明: 免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ:2760375052
上一篇: 编程猫所有积木介绍
下一篇: 范式创新的案例有哪些
最近发表
- 特朗普回应普京涉乌言论,强硬立场引发争议与担忧
- 民营企业如何向新而行——探索创新发展的路径与实践
- 联合国秘书长视角下的普京提议,深度解析与理解
- 广东茂名发生地震,一次轻微震动带来的启示与思考
- 刀郎演唱会外,上千歌迷的守候与共鸣
- 东北夫妻开店遭遇刁难?当地回应来了
- 特朗普惊人言论,为夺取格陵兰岛,美国不排除动用武力
- 超级食物在中国,掀起健康热潮
- 父爱无声胜有声,监控摄像头背后的温情呼唤
- 泥坑中的拥抱,一次意外的冒险之旅
- 成品油需求变天,市场趋势下的新机遇与挑战
- 警惕儿童健康隐患,10岁女孩因高烧去世背后的警示
- 提振消费,新举措助力消费复苏
- 蒙牛净利润暴跌98%的背后原因及未来展望
- 揭秘缅甸强震背后的真相,并非意外事件
- 揭秘失踪的清华毕业生罗生门背后的悲剧真相
- 冷空气终于要走了,春天的脚步近了
- 李乃文的神奇之笔,与和伟的奇妙转变
- 妹妹发现植物人哥哥离世后的崩溃大哭,生命的脆弱与情感的冲击
- 云南曲靖市会泽县发生4.4级地震,深入了解与应对之道
- 缅甸政府部门大楼倒塌事件,多名官员伤亡,揭示背后的故事
- 多方合力寻找失踪的十二岁少女,七天生死大搜寻
- S妈情绪崩溃,小S拒绝好友聚会背后的故事
- 缅甸遭遇地震,灾难之下的人间故事与影响深度解析
- 缅甸地震与瑞丽市中心高楼砖石坠落事件揭秘
- 揭秘ASP集中营,技术成长的摇篮与挑战
- 徐彬,整场高位压迫对海港形成巨大压力——战术分析与实践洞察
- ThreadX操作系统,轻量、高效与未来的嵌入式开发新选择
- 王钰栋脚踝被踩事件回应,伤势并不严重,一切都在恢复中
- 刘亦菲,粉色花瓣裙美神降临
- 三星W2018与G9298,高端翻盖手机的对比分析
- 多哈世乒赛器材,赛场内外的热议焦点
- K2两厢车,小巧灵活的城市出行神器,适合你的生活吗?
- 国家市监局将审查李嘉诚港口交易,聚焦市场关注焦点
- 提升知识水平的趣味之旅
- 清明五一档电影市场繁荣,多部影片争相上映,你期待哪一部?
- 美联储再次面临痛苦抉择,权衡通胀与经济恢复
- 家庭千万别买投影仪——真相大揭秘!
- 文物当上网红后,年轻人的创意与传承之道
- 手机解除Root的最简单方法,安全、快速、易操作
- 缅甸地震与汶川地震,能量的震撼与对比
- 2011款奥迪A8,豪华与科技的完美结合
- 广州惊艳亮相,可折叠电动垂直起降飞行器革新城市交通方式
- 比亚迪F3最低报价解析,性价比之选的购车指南
- 商业健康保险药品征求意见,行业内外视角与实用建议
- 官方动态解读,最低工资标准的合理调整
- 东风标致5008最新报价出炉,性价比杀手来了!
- 大陆配偶在台湾遭遇限期离台风波,各界发声背后的故事与影响
- 奔驰C级2022新款,豪华与科技的完美融合
- 大摩小摩去年四季度对A股的投资热潮